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Abstract— Accelerators are special purpose processors 
designed to speed up compute-intensive sections of applications. 
Field programmable gate arrays (FPGAs) and graphics 
processing units (GPUs) offer scope for hardware acceleration of 
applications. FPGAs are highly customizable, while GPUs 
provide massive parallel execution resources and high memory 
bandwidth. In general, FPGAs provide the best expectation of 
performance, flexibility and low overhead, while GPUs tend to be 
easier to program. In this paper, we compare the performance of 
these architectures, presenting a performance study of SEAL, a 
fast, software-oriented encryption algorithm on a Virtex-6 FPGA, 
a Graphics Processor Unit (GPU), and Intel Core i7, a hyper-
threaded, quad core multi-core (CMP). We perform a 
comparative study of application behavior on these three diverse 
accelerators considering performance and we show that each 
platform has relative competitive advantages in encrypting an 
input plaintext using SEAL.  
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I. INTRODUCTION 

The demand for efficient cryptographic solutions has been 
continuously growing in the last decade as a consequence of 
using the Internet in critical areas like business, government 
and healthcare. Encryption must often be performed at high 
data rates, a requirement sometimes met with the help of 
supporting cryptographic hardware. The computational cost of 
software cryptography is a function of both the complexity of 
the algorithm and the quality of its implementation. However, 
regardless of implementation, a cryptographic algorithm 
designed to run well in hardware will typically not perform in 
software as well as an algorithm optimized for software 
execution. Often what is needed is a well-designed, software-
optimized encryption method for today’s general purpose 
computers. To this end, Phil Rogaway and Don Coppersmith 
designed SEAL (Software Encryption Algorithm) [1]. 
SEAL is a stream cipher, namely incoming data are streamed 
into the algorithm and continuously encrypted. Stream ciphers 
are much faster than block ciphers (Blowfish, IDEA, DES). 
SEAL is a length increasing pseudo-random encryption 
algorithm which maps a 32-bit sequence number n to a 
keystream L under the control of a 160-bit secret key. During 
the initialization phase, SEAL preprocesses the key into a set 
of larger tables using the Secure Hash Algorithm SHA1. 
These tables are then used to speed up encryption and 
decryption. SEAL was designed as an algorithm appropriate 
for software implementation on 32-bit processors with small 
register files. 
SEAL is an alternative algorithm to software-based Data 
Encryption Standard (DES), Triple DES (3DES), and 

Advanced Encryption Standard (AES), with a lower impact to 
CPU execution time. 
The SEAL Encryption feature provides support for the SEAL 
Algorithm in Cisco Internetwork Operating System (IOS) IP 
Security (IPSec) implementations. Moreover, since SEAL has 
the ability to generate portions of the keystream without 
having to restart from the beginning, it is exceptionally fast 
for encrypting streaming data at high data rates, in 
applications such as on-the-fly disk I/O encryption.  
On the platform architecture front, there has been a major shift 
towards systems with multiple cores, driven by the limited 
instruction level parallelism and the prohibitive power 
dissipation of high frequency, single-threaded / single-core 
processors. Moreover, reconfigurable logic such as FPGAs, 
vector processors such as the Synergistic Processing Elements 
(SPEs) in Cell processor, and Graphics Processing Units 
(GPUs) have been shown to speed up applications in 
multimedia, graphics, data mining, scientific computing, etc. 
by orders of magnitude, compared with conventional, 
homogeneous multi-cores.  
GPUs are particularly good in exploiting fine-grain SIMT 
(Single Instruction Multiple Threads) parallelism. The 
application is partitioned in threads that are executed in 
parallel on the massively parallel computational substrate.  
On the other hand, CMPs can handle fewer independent 
threads, at a coarser granularity. CPU vendors have also added 
SIMD operations on their products, such as the SSE 
multimedia ISA extensions for Intel x86, to exploit the 
vectorization opportunities offered by many applications. The 
latest conventional CMPs come with up to 6 cores (12 threads 
for cores with SMT capabilities).  
There is little systematic research on how accelerators based 
on different computing substrates, such as homogeneous and 
heterogeneous multi-cores, vector accelerators, and 
reconfigurable devices compare in terms of performance. Our 
work compares the performance of these architectures, 
presenting a performance study of SEAL on a high 
performance Virtex-6 FPGA, the latest Nvidia GPU GeForce 
GTX 480 based on the Fermi architecture and the quad-core 
Intel Core i7.  
The rest of the paper is organized as follows. Chapter II 
provides the details of the SEAL algorithm. Chapter III 
describes the FPGA architecture, implementation and 
performance analysis. In Chapter IV we present an 
implementation of SEAL on the GPU architecture and show 
its performance improvements over the optimized Core i7 
implementation. Chapter V describes related work and 
Chapter Error! Reference source not found. concludes our 
work. 
 



 

II. DESCRIPTION OF SEAL ALGORITHM 

SEAL is a type of cryptographic object called a pseudorandom 
function family [2]. SEAL is a length increasing 
pseudorandom function that, under the control of a random 
160-bit key a, expands a 32-bit position index n to an L bit 
keystream (Fig.1). Number L can be made arbitrarily large as 
needed for a target application but output lengths ranging 
from a few bytes to a few thousand bytes are anticipated. In 
this paper, we assume that the output length L is exactly 4 KB 
(or 210 32-bit words). The L-bit output keystream y is used to 
encrypt input plaintext X by using the XOR operation. 

 

  
Figure 2. SEAL functional diagram. Output y is the encrypted keystream.  

The algorithm is divided into two steps [3]. Step 1 involves 
Tables generation. This step uses the compression function of 
SHA-1 to expand the secret key α into larger tables T, S, and 
R. These tables are fixed and can be precomputed after the key 
α has been established. Tables T and S are 2KB bytes and 
1KB in size, respectively. The size of table R depends on the 
desired bit length L of the keystream – each 1KB of keystream 
requires 16 bytes of R. 
 Table generation is typically done once over the course of a 
communication session. Typically, this session takes 
substantial amount of time and is not in the critical path. It is 
acceptable, in most applications, to spend this time to map the 
short key a to a longer representation. Therefore, SEAL is not 
an appropriate choice for applications that require rapid key 

set up [1]. In the experimental evaluation section, we will 
assess performance degradation due to frequent key changes.  
The second step is the pseudorandom function. Given the 
number of bits L, the tables T, R, and S (determined by a), and 
a 32-bit position index n, the algorithm stretches n to an L-bit 
pseudorandom string y. The algorithm uses the routine 
Initialize which maps n and to the words A,B,C, D, n1, n2, n3, 
n4 (Fig.2). These variables are modified over 64 iterations as 
shown in Fig. 3. 
SEAL algorithm uses a few heuristics to improve the 
capability of the cipher to fend off attacks. For example, it 
uses a large, secret key-derived S-box (the 2KB table T). 
Moreover, it uses an internal state which does not directly 
manifest itself in the data stream (the registers n1, n2, n3, n4 

which modify A and C at the end of each iteration). 

A. Parallelism Potential  

The SEAL algorithm can be applied concurrently on 
successive sections of the input as streaming plaintext X 
becomes available. Thus, thread-level parallelism, i.e. 
replicating the computation shown in Figure 2, is scalable with 
the number of cores available and is only limited by the 
available bandwidth to memory.  
On the other hand, there is limited instruction and data-level 
parallelism at the inner loop of Figure 3, because of the inter-
dependences among instructions of the inner loop. However, 
the outer loop of Figure 3 can be unrolled since all iterations 
are independent (variables A, B, C and D are initialized at the 
beginning of each iteration). We use this observation to 
exploit SIMD parallelism in platforms with vector processing 
capabilities.  
We expect significant performance improvements not only by 
exploiting thread- and data-level parallelism, but also by 
increasing clock frequency and resolving data dependencies 
quickly. This is manifested in the experimental evaluation 
section by the competitive performance of Core i7, a high 
frequency processor with advanced architecture within each 
2-way SMT core.  
 

III.  FPGA IMPLEMENTATION 

 

Figure 1. Initialization of (A, B, C, D , nl , n2, n3, n4) from n. This 
initialization depends on tables T and R [1]. 

 
Figure 3. Cipher mapping 32-bit index n to L-bit string SEAI-a(n) under the 
control of tables T, R, and S [1]. 



Figure 4 shows the block diagram of the FPGA hardware 
implementation. We implemented the module TABLE_G for 
the production of the three tables R, S, and T (Figure 5). This 
module is just the compression function of the Secure Hash 
Algorithm SHA-1.  
Each time TABLE_G runs, it produces a different output of 
(160 bits), which is written to five positions of memory (5x32 
bits). We parallelized the process for the production of the 3 
tables - memories as shown in Figure 5. For the 
implementation of these tables, we used BRAMS 32-bit wide 
and with sizes of 2KB for T, 1KB for S and 64 bytes for R 
respectively. 
The Initialize module uses four 32-bit registers, A, B, C, and D, 
whose initial values are determined by n and the key-derived 
tables R and T. The module maps the 32-bit position index n 
and the iteration counter l to eight 32-bit words A0, B0, C0, D0, 
n1, n2, n3, n4. 

These registers are modified over several iterations in the 
main body of SEAL encryption to produce Ai, Bi, Ci, Di on 
each iteration. In each round nine bits of a register (either A, B, 
C, or D) are used to index into table T. The value retrieved 
from T is then added to or XORed with the contents of a 
second register: again one of A, B, C, or D (Figure 3).  
The first register is then circularly shifted by nine positions. In 
some rounds the second register is further modified by adding 
or XORing it with the (now shifted) first register. When 
registers Ai, Bi, Ci, and Di are written, they are added to the 
keystream, each masked by first adding or XORing it with a 
certain word from table S. The iteration is completed by 
adding to A and C additional values dependent on n, n1, n2, 
n3, n4. 
Keystream values y derived from this procedure are XORed 
with the plaintext data of memory X. We take advantage of the 
fact that on-chip memories (BRAMs) of high-end FPGAs are 
dual-ported so that we can overlap reads/writes of the 
keystream y.  
An interesting design space exploration exercise is the 
introduction of pipeline stages in the execution of sequential 
computations for Table Generation and main encryption 
(Figure 3). For modules that execute non-critical operations 
such as Table Generation, we are mostly interested in high 
clock frequency, since these modules will determine the 
global clock frequency (we use a single clock in our design). 
Therefore, these modules are heavily pipelined to increase 
clock frequency. 

A. Experimental Evaluation of FPGA implementation 

The FPGA design has been implemented on a Xilinx Virtex-6 
HX380T FPGA in Verilog using the Xilinx ISE 12.4 toolset. 
The hardware complexity of a single accelerator is 
demonstrated in Table I. A single accelerator processes a 4KB 
input plaintext message X to produce a 4KB encrypted stream. 
The HX380T FPGA can accommodate up to 32 engines for 
encrypting 32 4KB plaintext sections in parallel. The 32x 
accelerator case only replicates the main body of SEAL 
encryption, not the Table Generation module. Table I also 
shows that we can achieve 179 MHz clock frequency.  
In order to measure the performance of our approach several 
real-world experiments have been carried out with different 
configurations of the system and various data-sets (Table II). 
The first configuration assumes a very frequent key change 
every 4 KB. This, in effect, modifies the key and re-initializes 
the tables T, S, and R at the end of every keystream 
generation. It is an extreme case used to demonstrate the 
efficacy of each platform to execute the Table Generation 
functionality.  
The third configuration assumes that the whole input belongs 
to a single communication session, whereas the second 
configuration is an intermediate case. Our measurements show 
that the Table Generation phase is a performance bottleneck if 
the SEAL user requires frequent secret key modifications.  

IV. MULTICORE IMPLEMENTATIONS 

One of the objectives of this work is to study the 
performance of SEAL when fully optimized for both 
reconfigurable and multi-core platforms. We use the following 

 
Figure 4. The block diagram of SEAL hardware implementation. 

 
Figure 5 Table Generation Design 

TABLE I. RESOURCE UTILIZATION AND MAXIMUM 
CLOCK FREQUENCY FOR A SINGLE AND 32 SEAL 
ACCELERATORS, IMPLEMENTED IN A VIRTEX-6 HX380T 
FPGA. 

 Single 
Accelerator 

32x 
Accelerators 

FPGA Total 
Available 

Logic Slices 1350 46,596 59,760 
BRAMs 
(36Kb) 

5 160 768 

CLK (MHz) 185 179  



platforms (besides the Virtex-6 FPGA): 
• An Intel-based workstation using the Intel Core i7 870 

processor (45nm), clocked at 2.93 GHz with 8GB DDR3 
memory. This processor integrates four identical cores 
each with private L1 and L2 caches (32KB and 256 KB, 
respectively), and a common 8MB L3 Cache. 

• An NVIDIA GeForce GTX-480 high-end GPU (40nm), 
clocked at 1.4 GHz with 1.5 GB of GDDR5 device 
memory. This GPU is based on the Fermi architecture 
and includes 480 cores organized in 15 Streaming 
Multiprocessors (SM) of 32 cores each. Compared with 
previous GPU generations, it adds an L1/L2 cache 
hierarchy to the memory architecture to reduce memory 
access latency and improve programmability. GeForce 
GTX-480 is connected to Core i7 motherboard via a 16x 
PCI express bus. 

A first, generic optimization with respect to the reference 
SEAL implementation was to indentify key invariant 
computations in Table Generation and remove them from the 
critical path of Table Generation, i.e. perform them only once, 
on program initialization. The benefits are obvious in the 
common real-world case where a large message is encoded 
using multiple keys, thus requiring multiple calls to Table 
Generation. 

A. x86 Parallelization 

 The parallelization on x86 was a two step process: we first 
created a vectorized (SIMD) version of the algorithm and 
then exploited multithreading.  
We introduced vectorization in both the phases of Table 
Generation and encryption. Loops without data dependencies 
(outer loop of Figure 2) are unrolled by a factor of 4, 
therefore data are processed in group of 128-bit (as vectors of 
4 x 32-bit elements), using intrinsics from the SSE2 
instruction set.  
In order to facilitate the efficient exploitation of the vector 
capabilities of the processor, data had to be reorganized in 
memory – either by changing their shape or by padding 
arrays. Consecutive elements within an input or output vector 
need to be stored in consecutive, properly aligned addresses 
in memory.  
Multithreading is applied during data encryption, at the 
granularity of a block (group) of messages. In scenarios 
where multiple messages need to be encoded, this can be 
done in parallel, provided that simultaneously encoded 
messages use the same T, S, and R arrays.  
We used a supervisor-worker threads scheme. The supervisor 
reads a chunk of 4KB plaintext messages from the input and 

partitions them to message blocks, which are in turn 
distributed to worker threads. Moreover, if the key needs to 
change throughout the encoding of the input data, the 
supervisor executes Table Generation to produce the new 
same T, S, and R arrays. Finally, the supervisor notifies 
workers whenever there is no more input data to process, and 
they – in turn – terminate gracefully. 
Unfortunately there are no exploitable opportunities for 
multithreading in Table Generation, due to the tight data 
dependencies between successive iterations of the outer loop. 
However, Table Generation is pipelined with data encryption, 
whenever multiple keys are used for the encoding of a large 
data set, resulting to the generation of multiple sets of tables. 
When workers are encoding using version i of the T, S and R 
tables, the supervisor thread generates their next (i+1) 
version, using the next key. As was discussed in Section II, in 
realistic situations multiple keys can used successively, 
however key changes occur at a very low rate that allows 
Table Generation to fully overlap with data encryption, 
without becoming a bottleneck. In order to ensure that each 
message block is encoded with the correct arrays we apply 
double buffering. There are two copies of T, S and R tables: 
one written by the supervisor when preparing the tables for 
the next key, and one read by the workers, generated by the 
currently effective key. A global barrier synchronizes the 
supervisor and workers at key change points. At those points, 
the roles of the two copies of the tables are flipped.  
Multithreading has been implemented using the POSIX 
threads standard. We have experimented with up to 8 worker 
threads, in order to exploit the 4 cores and the 2-way SMT 
(Hyperthreading) capabilities of the Core i7 processor. 

B. GPU (CUDA) Implementation 

A distinguishing characteristic of GPUs is that they are able 
to manage parallelism at a very fine granularity. Given that 
they support extremely fast context switching between thread 
warps (i.e. groups of threads) upon stalls of any kind, 
abundant parallelism must be available in order to effectively 
hide the latency introduced by stalls and keep GPU 
utilization high. Another interesting feature of GPUs – 
especially the latest Nvidia Fermi architecture – is that they 
allow the configuration of on-chip cache memory as either 
software- or hardware-controlled. It should also be noted that 
the GPU is an independent device and does not have direct 
access to the system’s main memory. Instead, input data and 
results must be programmatically transferred between 
system’s main memory and the GPU device memory 
(GDDR5 DRAM)1. Those transfers suffer severe latency and 
are limited by the PCIe bus bandwidth. 
We implemented SEAL on the GPU using CUDA, a 
programming model by Nvidia, specifically designed and 
implemented to support general purpose computations on 
GPUs. 
Given that the parallelism in Table Generation is rather 
limited, Table Generation proved to perform better on the 
CPU than on the GPU, even after taking into account the cost 

                                                
1 Latest Nvidia Fermi GPUs can make this process somewhat transparent to 
the programmer, yet with many limitations. 

TABLE II FPGA PERFORMANCE MEASUREMENTS 

  
1 GB encryption 
with key change 

every 4KB 

1 GB encryption 
with key change 

every 128MB 

1 GB encryption 
with key change 

every 1GB 

Single Accelerator 20.152sec 8.165sec 8.164sec 

32x Accelerators 0.629sec 0.255sec 0.255sec 



of transferring the generated tables to the GPU. Generating 
the T, S and R tables in the CPU also provides opportunities 
of pipelining and overlapping Table Generation with data 
encryption, as described in the previous section. Moreover, 
since the tables are read-only by the GPU they can be stored 
to constant memory – a software controlled, low-latency, 
high bandwidth, read-only cache in the GPU. 
In order to overlap memory transfers between device 
memory and main memory we used the mechanism of 
streaming offered by CUDA. Streams are named sequences 
of data transfers and/or computations. Operations within a 
stream must be performed synchronously and in order. 
However, operations across different streams are totally 
independent and asynchronous. Each stream transfers a 
64MB block of messages to the GPU, encodes the messages 
and transfers the results back to the main memory. The block 
of messages is processed in parallel by 16,384 threads. The 
block size is an educated choice that satisfies the tradeoff of 
low memory requirements – so that concurrently active 
streams do not overflow any level of the GPU memory 
hierarchy – offering at the same time high parallelism 
potential – so that GPU computational resources are 
efficiently utilized, hiding stalls latency.  
The GPU memory management unit performs significantly 
better if accesses to device memory are coalesced, i.e. if they 
follow specific patterns. In the SEAL encryption 
implementation coalesced memory accesses could be 
achieved by transposing data from the input streams and also 
results before sending them back to the main memory. The 
performance benefits of memory coalescing proved enough 
to justify the extra cost of the two transpose operations, 
which were implemented using the optimized algorithm 
available in the CUDA SDK [13]. Some extra reorganization 
of the algorithm allowed the minimization of the number of 
high-latency memory transfers, favoring fewer, large 
transfers instead of more, smaller ones. 

IV. EXPERIMENTAL EVALUATION AND COMPARISON 

Similar to the FPGA implementation, we decided that it 
could be useful to test our implementations changing key 
after 1 message or 32Kbit or 4KB, 32768 messages or 1Gbit 
or 128MB, 262144 messages or 8Gbit or 1GB. We created a 
random 1GB input file and ran each of our 4 implementations 
(Initial version (Single Threaded), SIMD version (Single 
Threaded), Multithreaded + SIMD version for 2, 4, 8 threads, 
CUDA) 5 times.  
Figure 6 compares the speed-up of SEAL implementations 
for all three scenaria described in Section III.A compared to 
the execution time of SEAL code running as a single thread 
on Core i7. The single-threaded code (corresponding to speed 
up of 1) requires 1.5 secs for 8 Gbit and 1 Gbit sessions, and 
11.28 secs when a session is 4 KB in order to encrypt an 
input plaintext of 128 MB.  
Code optimizations for Core i7 are very successful in 
improving speed-up as shown in Figure 6. Data level 
parallelism (SIMDization) is more successful when used in 
Table Generation and makes a pronounced contribution to 
speed up when session size is 32 Kbits.  

Running threads in multiple cores provides linear speed up 
which is to be expected since threads are independent. 
Somewhat surprisingly, hyperthreading (when moving from 
4 to 8 cores) provides a remarkable speed up of 
approximately 42% in the first two scenaria. This is an 
interesting observation since hyperthreading has been shown 
to provide much lower performance improvement for various 
workloads and, sometimes, has an adverse impact on 
execution time. 
The FPGA implementation is easily scalable and its 
performance depends on the number of available accelerators 
that can fit in the device. The low performance of a single 
accelerator is mainly due to the low clock frequency of 
FPGAs compared to high performance processors, and the 
limited parallelism within an accelerator. FPGAs perform 
relatively better when session size is 32 Kbits, because they 
can offer an efficient implementation of the Table Generation 
module, which becomes the bottleneck in this usage scenario.  
The GPU proved to be an appropriate platform for 
implementing the SEAL algorithm. When we include the 
copies of plaintext data and tables from CPU main memory 
to GPU device memory on execution time, speed up drops 
considerably, below Core i7 performance. This shows that 
performance is limited by the peak bandwidth of 16x PCIe. 
We should note, however, that GeForce GTX-480 is one of 
the fastest commercially available GPUs. Figure 6 shows that 
is is difficult to keep all 480 streaming processor from 
computational starvation when limited by PCIe bandwidth.  

V. RELATED WORK 

This section provides some references to previous work 
related to developing cryptography solutions both in dedicated 
hardware on GPUs and FPGAs. 
Several applications and especially in cryptography have been 
proposed and implemented in hardware. Examples include 
image processing [5], data mining [6] for FPGAs, and AES 
encryption [7] on GPUs.  
Comparison between FPGAs and GPUs has been proposed for 
video processing applications [8], and data encryption 
standards  (DES [9], SHA-1[14]) 
Lin Zhou , and Wenbao Han  investigated the implementation 
and performance of SHA-1 using FPGA and GPU, with the 
view of comparison their salient features [14]  . 
The DES encryption results [9] shows to process a single, 64-
bit block on FPGA and requires only 83 cycles, while the 
same operation executed on the GPU requires 5.80 Χ 105 
cycles. While the GPU does not support some important 
operations for this application, the main reason for this 
disparity is that the GPU requires full utilization to take 
advantage of the hardware’s latency hiding design, and this 
example far underutilized the processor. 
An implementation of SEAL in C encrypted the input 
plaintext at 6.9 MB/sec on an antiquated PC (50MHz). The 
same code ran at 15.5 MB/sec on a low end RISC workstation 
(an SGI Indy, which has a 100 MHz MIPS 4600 Processor) 
[10].  
Bosselaers provided experimental results on the performance 
of various cryptographic algorithms in [11]. A comparison 



SEAL implementation on the two machines (SPARC and 
Alpha) is shown in [12]. 

VI. CONCLUSION 

In this paper, we have presented the mapping and 
optimization of the SEAL Encryption algorithm on an FPGA, 
an Intel Core i7, and the NVidia GeForce GTX480 GPU. All 
three platforms were able to exploit the available thread-level 
parallelism and achieve the high performance. We have found 
that the modern CMP platforms make better use of the 
sophisticated hardware-based cache hierarchy as well as high 
clock frequencies to sustain high utilization of the data path. 
GPUs have the potential to speed up SEAL algorithm even 
more provided that they are not limited by the bandwidth of 
PCIe. Finally, FPGAs can better exploit parallelism of Table 
Generation module.  Thread level parallelism is only limited 
by the device size and is the main way to alleviate the adverse 
effects of low clock frequency. 
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Figure 6. Performance comparison across the three platforms for various configurations 


