
IMPLEMENTATION AND PERFORMANCE ANALYSIS OF
SEAL ENCRYPTION ON FPGA, GPU AND MULTI-CORE

PROCESSORS

Abstract— Accelerators are special purpose processors
designed to speed up compute-intensive sections of applications.
Field programmable gate arrays (FPGAs) and graphics
processing units (GPUs) offer scope for hardware acceleration of
applications. FPGAs are highly customizable, while GPUs
provide massive parallel execution resources and high memory
bandwidth. In general, FPGAs provide the best expectation of
performance, flexibility and low overhead, while GPUs tend to be
easier to program. In this paper, we compare the performance of
these architectures, presenting a performance study of SEAL, a
fast, software-oriented encryption algorithm on a Virtex-6 FPGA,
a Graphics Processor Unit (GPU), and Intel Core i7, a hyper-
threaded, quad core multi-core (CMP). We perform a
comparative study of application behavior on these three diverse
accelerators considering performance and we show that each
platform has relative competitive advantages in encrypting an
input plaintext using SEAL.

Keyword- Cryptography, Encryption, FPGA, Reconfigurable
Computing, GPU, CMP

I. INTRODUCTION

The demand for efficient cryptographic solutions has been
continuously growing in the last decade as a consequence of
using the Internet in critical areas like business, government
and healthcare. Encryption must often be performed at high
data rates, a requirement sometimes met with the help of
supporting cryptographic hardware. The computational cost of
software cryptography is a function of both the complexity of
the algorithm and the quality of its implementation. However,
regardless of implementation, a cryptographic algorithm
designed to run well in hardware will typically not perform in
software as well as an algorithm optimized for software
execution. Often what is needed is a well-designed, software-
optimized encryption method for today’s general purpose
computers. To this end, Phil Rogaway and Don Coppersmith
designed SEAL (Software Encryption Algorithm) [1].
SEAL is a stream cipher, namely incoming data are streamed
into the algorithm and continuously encrypted. Stream ciphers
are much faster than block ciphers (Blowfish, IDEA, DES).
SEAL is a length increasing pseudo-random encryption
algorithm which maps a 32-bit sequence number n to a
keystream L under the control of a 160-bit secret key. During
the initialization phase, SEAL preprocesses the key into a set
of larger tables using the Secure Hash Algorithm SHA1.
These tables are then used to speed up encryption and
decryption. SEAL was designed as an algorithm appropriate
for software implementation on 32-bit processors with small
register files.
SEAL is an alternative algorithm to software-based Data
Encryption Standard (DES), Triple DES (3DES), and

Advanced Encryption Standard (AES), with a lower impact to
CPU execution time.
The SEAL Encryption feature provides support for the SEAL
Algorithm in Cisco Internetwork Operating System (IOS) IP
Security (IPSec) implementations. Moreover, since SEAL has
the ability to generate portions of the keystream without
having to restart from the beginning, it is exceptionally fast
for encrypting streaming data at high data rates, in
applications such as on-the-fly disk I/O encryption.
On the platform architecture front, there has been a major shift
towards systems with multiple cores, driven by the limited
instruction level parallelism and the prohibitive power
dissipation of high frequency, single-threaded / single-core
processors. Moreover, reconfigurable logic such as FPGAs,
vector processors such as the Synergistic Processing Elements
(SPEs) in Cell processor, and Graphics Processing Units
(GPUs) have been shown to speed up applications in
multimedia, graphics, data mining, scientific computing, etc.
by orders of magnitude, compared with conventional,
homogeneous multi-cores.
GPUs are particularly good in exploiting fine-grain SIMT
(Single Instruction Multiple Threads) parallelism. The
application is partitioned in threads that are executed in
parallel on the massively parallel computational substrate.
On the other hand, CMPs can handle fewer independent
threads, at a coarser granularity. CPU vendors have also added
SIMD operations on their products, such as the SSE
multimedia ISA extensions for Intel x86, to exploit the
vectorization opportunities offered by many applications. The
latest conventional CMPs come with up to 6 cores (12 threads
for cores with SMT capabilities).
There is little systematic research on how accelerators based
on different computing substrates, such as homogeneous and
heterogeneous multi-cores, vector accelerators, and
reconfigurable devices compare in terms of performance. Our
work compares the performance of these architectures,
presenting a performance study of SEAL on a high
performance Virtex-6 FPGA, the latest Nvidia GPU GeForce
GTX 480 based on the Fermi architecture and the quad-core
Intel Core i7.
The rest of the paper is organized as follows. Chapter II
provides the details of the SEAL algorithm. Chapter III
describes the FPGA architecture, implementation and
performance analysis. In Chapter IV we present an
implementation of SEAL on the GPU architecture and show
its performance improvements over the optimized Core i7
implementation. Chapter V describes related work and
Chapter Error! Reference source not found. concludes our
work.

II. DESCRIPTION OF SEAL ALGORITHM

SEAL is a type of cryptographic object called a pseudorandom
function family [2]. SEAL is a length increasing
pseudorandom function that, under the control of a random
160-bit key a, expands a 32-bit position index n to an L bit
keystream (Fig.1). Number L can be made arbitrarily large as
needed for a target application but output lengths ranging
from a few bytes to a few thousand bytes are anticipated. In
this paper, we assume that the output length L is exactly 4 KB
(or 210 32-bit words). The L-bit output keystream y is used to
encrypt input plaintext X by using the XOR operation.

Figure 2. SEAL functional diagram. Output y is the encrypted keystream.

The algorithm is divided into two steps [3]. Step 1 involves
Tables generation. This step uses the compression function of
SHA-1 to expand the secret key α into larger tables T, S, and
R. These tables are fixed and can be precomputed after the key
α has been established. Tables T and S are 2KB bytes and
1KB in size, respectively. The size of table R depends on the
desired bit length L of the keystream – each 1KB of keystream
requires 16 bytes of R.
 Table generation is typically done once over the course of a
communication session. Typically, this session takes
substantial amount of time and is not in the critical path. It is
acceptable, in most applications, to spend this time to map the
short key a to a longer representation. Therefore, SEAL is not
an appropriate choice for applications that require rapid key

set up [1]. In the experimental evaluation section, we will
assess performance degradation due to frequent key changes.
The second step is the pseudorandom function. Given the
number of bits L, the tables T, R, and S (determined by a), and
a 32-bit position index n, the algorithm stretches n to an L-bit
pseudorandom string y. The algorithm uses the routine
Initialize which maps n and to the words A,B,C, D, n1, n2, n3,
n4 (Fig.2). These variables are modified over 64 iterations as
shown in Fig. 3.
SEAL algorithm uses a few heuristics to improve the
capability of the cipher to fend off attacks. For example, it
uses a large, secret key-derived S-box (the 2KB table T).
Moreover, it uses an internal state which does not directly
manifest itself in the data stream (the registers n1, n2, n3, n4

which modify A and C at the end of each iteration).

A. Parallelism Potential

The SEAL algorithm can be applied concurrently on
successive sections of the input as streaming plaintext X
becomes available. Thus, thread-level parallelism, i.e.
replicating the computation shown in Figure 2, is scalable with
the number of cores available and is only limited by the
available bandwidth to memory.
On the other hand, there is limited instruction and data-level
parallelism at the inner loop of Figure 3, because of the inter-
dependences among instructions of the inner loop. However,
the outer loop of Figure 3 can be unrolled since all iterations
are independent (variables A, B, C and D are initialized at the
beginning of each iteration). We use this observation to
exploit SIMD parallelism in platforms with vector processing
capabilities.
We expect significant performance improvements not only by
exploiting thread- and data-level parallelism, but also by
increasing clock frequency and resolving data dependencies
quickly. This is manifested in the experimental evaluation
section by the competitive performance of Core i7, a high
frequency processor with advanced architecture within each
2-way SMT core.

III. FPGA IMPLEMENTATION

Figure 1. Initialization of (A, B, C, D , nl , n2, n3, n4) from n. This
initialization depends on tables T and R [1].

Figure 3. Cipher mapping 32-bit index n to L-bit string SEAI-a(n) under the
control of tables T, R, and S [1].

Figure 4 shows the block diagram of the FPGA hardware
implementation. We implemented the module TABLE_G for
the production of the three tables R, S, and T (Figure 5). This
module is just the compression function of the Secure Hash
Algorithm SHA-1.
Each time TABLE_G runs, it produces a different output of
(160 bits), which is written to five positions of memory (5x32
bits). We parallelized the process for the production of the 3
tables - memories as shown in Figure 5. For the
implementation of these tables, we used BRAMS 32-bit wide
and with sizes of 2KB for T, 1KB for S and 64 bytes for R
respectively.
The Initialize module uses four 32-bit registers, A, B, C, and D,
whose initial values are determined by n and the key-derived
tables R and T. The module maps the 32-bit position index n
and the iteration counter l to eight 32-bit words A0, B0, C0, D0,
n1, n2, n3, n4.

These registers are modified over several iterations in the
main body of SEAL encryption to produce Ai, Bi, Ci, Di on
each iteration. In each round nine bits of a register (either A, B,
C, or D) are used to index into table T. The value retrieved
from T is then added to or XORed with the contents of a
second register: again one of A, B, C, or D (Figure 3).
The first register is then circularly shifted by nine positions. In
some rounds the second register is further modified by adding
or XORing it with the (now shifted) first register. When
registers Ai, Bi, Ci, and Di are written, they are added to the
keystream, each masked by first adding or XORing it with a
certain word from table S. The iteration is completed by
adding to A and C additional values dependent on n, n1, n2,
n3, n4.
Keystream values y derived from this procedure are XORed
with the plaintext data of memory X. We take advantage of the
fact that on-chip memories (BRAMs) of high-end FPGAs are
dual-ported so that we can overlap reads/writes of the
keystream y.
An interesting design space exploration exercise is the
introduction of pipeline stages in the execution of sequential
computations for Table Generation and main encryption
(Figure 3). For modules that execute non-critical operations
such as Table Generation, we are mostly interested in high
clock frequency, since these modules will determine the
global clock frequency (we use a single clock in our design).
Therefore, these modules are heavily pipelined to increase
clock frequency.

A. Experimental Evaluation of FPGA implementation

The FPGA design has been implemented on a Xilinx Virtex-6
HX380T FPGA in Verilog using the Xilinx ISE 12.4 toolset.
The hardware complexity of a single accelerator is
demonstrated in Table I. A single accelerator processes a 4KB
input plaintext message X to produce a 4KB encrypted stream.
The HX380T FPGA can accommodate up to 32 engines for
encrypting 32 4KB plaintext sections in parallel. The 32x
accelerator case only replicates the main body of SEAL
encryption, not the Table Generation module. Table I also
shows that we can achieve 179 MHz clock frequency.
In order to measure the performance of our approach several
real-world experiments have been carried out with different
configurations of the system and various data-sets (Table II).
The first configuration assumes a very frequent key change
every 4 KB. This, in effect, modifies the key and re-initializes
the tables T, S, and R at the end of every keystream
generation. It is an extreme case used to demonstrate the
efficacy of each platform to execute the Table Generation
functionality.
The third configuration assumes that the whole input belongs
to a single communication session, whereas the second
configuration is an intermediate case. Our measurements show
that the Table Generation phase is a performance bottleneck if
the SEAL user requires frequent secret key modifications.

IV. MULTICORE IMPLEMENTATIONS

One of the objectives of this work is to study the
performance of SEAL when fully optimized for both
reconfigurable and multi-core platforms. We use the following

Figure 4. The block diagram of SEAL hardware implementation.

Figure 5 Table Generation Design

TABLE I. RESOURCE UTILIZATION AND MAXIMUM
CLOCK FREQUENCY FOR A SINGLE AND 32 SEAL
ACCELERATORS, IMPLEMENTED IN A VIRTEX-6 HX380T
FPGA.

 Single
Accelerator

32x
Accelerators

FPGA Total
Available

Logic Slices 1350 46,596 59,760
BRAMs
(36Kb)

5 160 768

CLK (MHz) 185 179

platforms (besides the Virtex-6 FPGA):
• An Intel-based workstation using the Intel Core i7 870

processor (45nm), clocked at 2.93 GHz with 8GB DDR3
memory. This processor integrates four identical cores
each with private L1 and L2 caches (32KB and 256 KB,
respectively), and a common 8MB L3 Cache.

• An NVIDIA GeForce GTX-480 high-end GPU (40nm),
clocked at 1.4 GHz with 1.5 GB of GDDR5 device
memory. This GPU is based on the Fermi architecture
and includes 480 cores organized in 15 Streaming
Multiprocessors (SM) of 32 cores each. Compared with
previous GPU generations, it adds an L1/L2 cache
hierarchy to the memory architecture to reduce memory
access latency and improve programmability. GeForce
GTX-480 is connected to Core i7 motherboard via a 16x
PCI express bus.

A first, generic optimization with respect to the reference
SEAL implementation was to indentify key invariant
computations in Table Generation and remove them from the
critical path of Table Generation, i.e. perform them only once,
on program initialization. The benefits are obvious in the
common real-world case where a large message is encoded
using multiple keys, thus requiring multiple calls to Table
Generation.

A. x86 Parallelization

 The parallelization on x86 was a two step process: we first
created a vectorized (SIMD) version of the algorithm and
then exploited multithreading.
We introduced vectorization in both the phases of Table
Generation and encryption. Loops without data dependencies
(outer loop of Figure 2) are unrolled by a factor of 4,
therefore data are processed in group of 128-bit (as vectors of
4 x 32-bit elements), using intrinsics from the SSE2
instruction set.
In order to facilitate the efficient exploitation of the vector
capabilities of the processor, data had to be reorganized in
memory – either by changing their shape or by padding
arrays. Consecutive elements within an input or output vector
need to be stored in consecutive, properly aligned addresses
in memory.
Multithreading is applied during data encryption, at the
granularity of a block (group) of messages. In scenarios
where multiple messages need to be encoded, this can be
done in parallel, provided that simultaneously encoded
messages use the same T, S, and R arrays.
We used a supervisor-worker threads scheme. The supervisor
reads a chunk of 4KB plaintext messages from the input and

partitions them to message blocks, which are in turn
distributed to worker threads. Moreover, if the key needs to
change throughout the encoding of the input data, the
supervisor executes Table Generation to produce the new
same T, S, and R arrays. Finally, the supervisor notifies
workers whenever there is no more input data to process, and
they – in turn – terminate gracefully.
Unfortunately there are no exploitable opportunities for
multithreading in Table Generation, due to the tight data
dependencies between successive iterations of the outer loop.
However, Table Generation is pipelined with data encryption,
whenever multiple keys are used for the encoding of a large
data set, resulting to the generation of multiple sets of tables.
When workers are encoding using version i of the T, S and R
tables, the supervisor thread generates their next (i+1)
version, using the next key. As was discussed in Section II, in
realistic situations multiple keys can used successively,
however key changes occur at a very low rate that allows
Table Generation to fully overlap with data encryption,
without becoming a bottleneck. In order to ensure that each
message block is encoded with the correct arrays we apply
double buffering. There are two copies of T, S and R tables:
one written by the supervisor when preparing the tables for
the next key, and one read by the workers, generated by the
currently effective key. A global barrier synchronizes the
supervisor and workers at key change points. At those points,
the roles of the two copies of the tables are flipped.
Multithreading has been implemented using the POSIX
threads standard. We have experimented with up to 8 worker
threads, in order to exploit the 4 cores and the 2-way SMT
(Hyperthreading) capabilities of the Core i7 processor.

B. GPU (CUDA) Implementation

A distinguishing characteristic of GPUs is that they are able
to manage parallelism at a very fine granularity. Given that
they support extremely fast context switching between thread
warps (i.e. groups of threads) upon stalls of any kind,
abundant parallelism must be available in order to effectively
hide the latency introduced by stalls and keep GPU
utilization high. Another interesting feature of GPUs –
especially the latest Nvidia Fermi architecture – is that they
allow the configuration of on-chip cache memory as either
software- or hardware-controlled. It should also be noted that
the GPU is an independent device and does not have direct
access to the system’s main memory. Instead, input data and
results must be programmatically transferred between
system’s main memory and the GPU device memory
(GDDR5 DRAM)1. Those transfers suffer severe latency and
are limited by the PCIe bus bandwidth.
We implemented SEAL on the GPU using CUDA, a
programming model by Nvidia, specifically designed and
implemented to support general purpose computations on
GPUs.
Given that the parallelism in Table Generation is rather
limited, Table Generation proved to perform better on the
CPU than on the GPU, even after taking into account the cost

1 Latest Nvidia Fermi GPUs can make this process somewhat transparent to
the programmer, yet with many limitations.

TABLE II FPGA PERFORMANCE MEASUREMENTS

1 GB encryption
with key change

every 4KB

1 GB encryption
with key change

every 128MB

1 GB encryption
with key change

every 1GB

Single Accelerator 20.152sec 8.165sec 8.164sec

32x Accelerators 0.629sec 0.255sec 0.255sec

of transferring the generated tables to the GPU. Generating
the T, S and R tables in the CPU also provides opportunities
of pipelining and overlapping Table Generation with data
encryption, as described in the previous section. Moreover,
since the tables are read-only by the GPU they can be stored
to constant memory – a software controlled, low-latency,
high bandwidth, read-only cache in the GPU.
In order to overlap memory transfers between device
memory and main memory we used the mechanism of
streaming offered by CUDA. Streams are named sequences
of data transfers and/or computations. Operations within a
stream must be performed synchronously and in order.
However, operations across different streams are totally
independent and asynchronous. Each stream transfers a
64MB block of messages to the GPU, encodes the messages
and transfers the results back to the main memory. The block
of messages is processed in parallel by 16,384 threads. The
block size is an educated choice that satisfies the tradeoff of
low memory requirements – so that concurrently active
streams do not overflow any level of the GPU memory
hierarchy – offering at the same time high parallelism
potential – so that GPU computational resources are
efficiently utilized, hiding stalls latency.
The GPU memory management unit performs significantly
better if accesses to device memory are coalesced, i.e. if they
follow specific patterns. In the SEAL encryption
implementation coalesced memory accesses could be
achieved by transposing data from the input streams and also
results before sending them back to the main memory. The
performance benefits of memory coalescing proved enough
to justify the extra cost of the two transpose operations,
which were implemented using the optimized algorithm
available in the CUDA SDK [13]. Some extra reorganization
of the algorithm allowed the minimization of the number of
high-latency memory transfers, favoring fewer, large
transfers instead of more, smaller ones.

IV. EXPERIMENTAL EVALUATION AND COMPARISON

Similar to the FPGA implementation, we decided that it
could be useful to test our implementations changing key
after 1 message or 32Kbit or 4KB, 32768 messages or 1Gbit
or 128MB, 262144 messages or 8Gbit or 1GB. We created a
random 1GB input file and ran each of our 4 implementations
(Initial version (Single Threaded), SIMD version (Single
Threaded), Multithreaded + SIMD version for 2, 4, 8 threads,
CUDA) 5 times.
Figure 6 compares the speed-up of SEAL implementations
for all three scenaria described in Section III.A compared to
the execution time of SEAL code running as a single thread
on Core i7. The single-threaded code (corresponding to speed
up of 1) requires 1.5 secs for 8 Gbit and 1 Gbit sessions, and
11.28 secs when a session is 4 KB in order to encrypt an
input plaintext of 128 MB.
Code optimizations for Core i7 are very successful in
improving speed-up as shown in Figure 6. Data level
parallelism (SIMDization) is more successful when used in
Table Generation and makes a pronounced contribution to
speed up when session size is 32 Kbits.

Running threads in multiple cores provides linear speed up
which is to be expected since threads are independent.
Somewhat surprisingly, hyperthreading (when moving from
4 to 8 cores) provides a remarkable speed up of
approximately 42% in the first two scenaria. This is an
interesting observation since hyperthreading has been shown
to provide much lower performance improvement for various
workloads and, sometimes, has an adverse impact on
execution time.
The FPGA implementation is easily scalable and its
performance depends on the number of available accelerators
that can fit in the device. The low performance of a single
accelerator is mainly due to the low clock frequency of
FPGAs compared to high performance processors, and the
limited parallelism within an accelerator. FPGAs perform
relatively better when session size is 32 Kbits, because they
can offer an efficient implementation of the Table Generation
module, which becomes the bottleneck in this usage scenario.
The GPU proved to be an appropriate platform for
implementing the SEAL algorithm. When we include the
copies of plaintext data and tables from CPU main memory
to GPU device memory on execution time, speed up drops
considerably, below Core i7 performance. This shows that
performance is limited by the peak bandwidth of 16x PCIe.
We should note, however, that GeForce GTX-480 is one of
the fastest commercially available GPUs. Figure 6 shows that
is is difficult to keep all 480 streaming processor from
computational starvation when limited by PCIe bandwidth.

V. RELATED WORK

This section provides some references to previous work
related to developing cryptography solutions both in dedicated
hardware on GPUs and FPGAs.
Several applications and especially in cryptography have been
proposed and implemented in hardware. Examples include
image processing [5], data mining [6] for FPGAs, and AES
encryption [7] on GPUs.
Comparison between FPGAs and GPUs has been proposed for
video processing applications [8], and data encryption
standards (DES [9], SHA-1[14])
Lin Zhou , and Wenbao Han investigated the implementation
and performance of SHA-1 using FPGA and GPU, with the
view of comparison their salient features [14] .
The DES encryption results [9] shows to process a single, 64-
bit block on FPGA and requires only 83 cycles, while the
same operation executed on the GPU requires 5.80 Χ 105
cycles. While the GPU does not support some important
operations for this application, the main reason for this
disparity is that the GPU requires full utilization to take
advantage of the hardware’s latency hiding design, and this
example far underutilized the processor.
An implementation of SEAL in C encrypted the input
plaintext at 6.9 MB/sec on an antiquated PC (50MHz). The
same code ran at 15.5 MB/sec on a low end RISC workstation
(an SGI Indy, which has a 100 MHz MIPS 4600 Processor)
[10].
Bosselaers provided experimental results on the performance
of various cryptographic algorithms in [11]. A comparison

SEAL implementation on the two machines (SPARC and
Alpha) is shown in [12].

VI. CONCLUSION

In this paper, we have presented the mapping and
optimization of the SEAL Encryption algorithm on an FPGA,
an Intel Core i7, and the NVidia GeForce GTX480 GPU. All
three platforms were able to exploit the available thread-level
parallelism and achieve the high performance. We have found
that the modern CMP platforms make better use of the
sophisticated hardware-based cache hierarchy as well as high
clock frequencies to sustain high utilization of the data path.
GPUs have the potential to speed up SEAL algorithm even
more provided that they are not limited by the bandwidth of
PCIe. Finally, FPGAs can better exploit parallelism of Table
Generation module. Thread level parallelism is only limited
by the device size and is the main way to alleviate the adverse
effects of low clock frequency.

VII. REFERENCES
[1] P. Rogaway and D. Coppersmith, "A Software-Optimized Encryption

Algorithm", Proceedings of the 1993 Cambridge Security Workshop,
Springer-Verlag, 1994.

[2] O. Goldreich, S. Goldwasser, S. Micali, “How to construct random
functions”, Journal of the ACM, Vol 33, No. 4, 1986, pp. 210-217

[3] H. Handschuh, H. Gilbert, “χ2 cryptanalysis of the SEAL encryption
algorithm”, Fast Software Encryption, Lecture Notes in Computer
Science, Vol. 1267, Springer- Verlag, 1997, pp. 1-12

[4] B. Schneier, Applied Cryptography, Second Edition, John Wiley &
Sons, 1996.

[5] B. de Ruijsscher, G. N. Gaydadjiev, J. Lichtenauer, and E. Hendriks.
FPGA accelerator for real-time skin segmentation. In Proceedings of

the 2006 IEEE/ACM/IFIP Workshop on Embedded Systems for Real
Time Multimedia, pages 93–97, 2006

[6] Z. K. Baker and V. K. Prasanna. Efficient hardware data mining with
the Apriori algorithm on FPGAs. In Proceedings of the 13th IEEE
Symposium on Field-Programmable Custom Computing Machines,
pages 3–12, 2005.

[7] T. Yamanouchi. AES encryption and decryption on the GPU. GPU
Gems 3, July 2007.

[8] B. Cope, P. Y. K. Cheung, W. Luk, and S. Witt. Have GPUs made
FPGAs redundant in the field of video processing? In Proceedings of
the 2005 IEEE International Conference on Field-Programmable
Technology, pages 111–118, 2005.

[9] Shuai Che; Jie Li; Sheaffer, J.W.; Skadron, K.; Lach, J.
“Accelerating Compute-Intensive Applications with GPUs and FPGAs”
In Application Specific Processors, 2008. SASP 2008. Symposium on ,
pages: 101 - 107 , 8-9 June 2008

[10] P. Rogaway and D. Coppersmith, "A Software-Optimized Encryption
Algorithm", FAST SOFTWARE ENCRYPTION,Lecture Notes in
Computer Science, 1994, Volume 809/1994, 56-63.

[11] B. Preneel, V. Rijmen, and A. Bosselaers, Recent developments in the
design of conventional cryptographic algorithms, Computer Security
and Industrial Cryptography—State of the Art and Evolution,Lecture
Notes in Computer Science, Springer-Verlag, Berlin, to appear.

[12] M. Roe, Performance of block ciphers and hash functions—one year
later, Fast Software Encryption, Lecture Notes in Computer Science,
Vol. 809, Springer-Verlag, Berlin, 1994, pp. 359–362.

[13] NVIDIA CUDA C SDK - Linear Algebra
http://developer.download.nvidia.com/compute/cuda/sdk/website/Linea
r_Algebra.html

[14] Lin Zhou , Wenbao Han, A Brief Implementation Analysis of SHA-1
on FPGAs, GPUs and Cell Processors,. International Conference
on Engineering Computation, 2009. ICEC '09 , Hong Kong

Figure 6. Performance comparison across the three platforms for various configurations

