IMPLEMENTATION AND PERFORMANCE ANALY SIS OF
SEAL ENCRYPTION ON FPGA, GPU AND MULTI-CORE
PROCESSORS

Abstract— Accelerators are special purpose processors
designed to speed up compute-intensive sections of applications.
Fidd programmable gate arrays (FPGAs) and graphics
processing units (GPUs) offer scope for har dwar e acceler ation of
applications. FPGAs are highly customizable, while GPUs
provide massive paralld execution resources and high memory
bandwidth. In general, FPGAs provide the best expectation of
performance, flexibility and low overhead, while GPUstend to be
easier to program. In this paper, we compar e the perfor mance of
these architectures, presenting a performance study of SEAL, a
fast, software-oriented encryption algorithm on a Virtex-6 FPGA,
a Graphics Processor Unit (GPU), and Intd Core i7, a hyper-
threaded, quad core multi-core (CMP). We peform a
compar ative study of application behavior on these three diverse
accederators considering performance and we show that each
platform has relative competitive advantages in encrypting an
input plaintext using SEAL.

Keyword- Cryptography, Encryption, FPGA, Reconfigurable
Computing, GPU, CMP

|I. INTRODUCTION

The demand for efficient cryptographic solutions hasnb
continuously growing in the last decade as a consequenc

e

gspi

Advanced Encryption Standard (AES), with a lower impact
CPU execution time.

The SEAL Encryption feature provides support for the SEAL
Algorithm in Cisco Internetwork Operating System (I0OB) |
Security (IPSec) implementations. Moreover, since ISBAs

the ability to generate portions of the keystream wuth
having to restart from the beginning, it is exceptionallst fa
for encrypting streaming data at high data rates, in
applications such as on-the-fly disk 1/O encryption.

On the platform architecture front, there has been arrshijft
towards systems with multiple cores, driven by theitdich
instruction level parallelism and the prohibitive power
dissipation of high frequency, single-threaded / single-core
processors. Moreover, reconfigurable logic such aGAsR
vector processors such as the Synergistic ProceB&ingents
(SPEs) in Cell processor, and Graphics Processings Unit
(GPUs) have been shown to speed up applications in
multimedia, graphics, data mining, scientific computiats.

by orders of magnitude, compared with conventional,
homogeneous multi-cores.

GPUs are particularly good in exploiting fine-grain SIMT
gle Instruction Multiple Threads) parallelism. The
lication is partitioned in threads that are executed in

:igghégir:gggneéégC”tti'gﬁl nzi[jes?so:‘ltl; %Lésmsrsfz’”g"eg;r{ hparaIIeI on the massively parallel computational sulsstrat
' yp P Or;f the other hand, CMPs can handle fewer independent

data rates, a requirement sometimes met W'th.the helpth(?eads, at a coarser granularity. CPU vendors havedtssl
supporting cryptographic hardware. The computational costsqfle operations on their products, such as the SSE

software cryptography s a function of both the compleaity multimedia ISA extensions for Intel x86, to exploit the

the algorithm an_d the quallty of its |mp|ementat|qn. HOWEVE o ctorization opportunities offered by many applicatiorise T
reggrdless of |mplgmentat|on, a cryptographlc alg.or'thmtest conventional CMPs come with up to 6 cores (12 threads
designed to run well in hardware will typically not perfam for cores with SMT capabilities)

software as well as an algorithm optimized for SOftwarﬁhere is little systematic research on how accelesdiased

execution. Often V‘.’hat is needed is a wel!-de3|gned, St n different computing substrates, such as homogeneous and
optimized encryption method for today's general PUrpog terogeneous multi-cores, vector accelerators, and

computers. To this end, Phil Rogaway and Don Coppersnpé ; : ;
. ; . onfigurable devices compare in terms of performaDoe.
designed SEAL (Software Encryption Algorithm) [1]. work compares the performance of these architectures,

.SItEA:F]'S ? str.?r?m cu?jher, ?amelyl|ncom|n? ((jjatgtmmme_dh resenting a performance study of SEAL on a high
Into the aigorithm and confinuously encrypted. stream cp ierformance Virtex-6 FPGA, the latest Nvidia GPU GeEor

are mu_ch faster than. block _C|phers (Blowfish, IDEA, DES TX 480 based on the Fermi architecture and the quad-core
SEAL is a length increasing pseudo-random encryptio

algorithm which maps a 32-bit sequence numbeto a tel Core i7.
et o P - au u . The rest of the paper is organized as follows. Chapter |

keystreamL under the control of a 160-bit secret key. Durin : ; :

A . rovides the details of the SEAL algorithm. Chapter |llI
the initialization pha_se, SEAL preprocesses the h&ya set gescribes the FPGA architecture, gimplementatign and
of larger tables using the Secure Hash Algorithm SH erformance analysis. In Chapter IV we present an
These .tables are then u;ed fo speed up encryption @i entation of SEAL on the GPU architecture ahdvs
decryption. SEAL was d95|gned as an algorithm approprig performance improvements over the optimized Core i7
for software implementation on 32-bit processors wittals implementation. Chapter V describes related work and

register files. |
SEAL is an alternative algorithm to software-based Da\%g?kpterError. Reference source not found. concludes our

Encryption Standard (DES), Triple DES (3DES), an

procedure Initialize,(n, £, A, B,C, D, n,n2,na,nq)

Il. DESCRIPTION OFSEAL ALGORITHM

A« n @ R[#];
SEAL is a type of cryptographic object callegseudorandom B+ (n)))8) @ R[4¢ + 1];
function famly [2]. SEAL is a length increasing C « (n))) 16) & R[4t +2];
pseudorandom function that, under the control of a random D« (n})) 24) @ R[4 + 3;
160-bit keya, expands a 32-bit position indexto anL bit for j 1 to 2 do
keystream (Fig.1). Numbdr can be made arbitrarily large as P« A& 0xTfc; B+ B+ T[P/4]; A+ A))Y;
needed for a target application but output lengths ranging P+ B & 0xTic; C + C + T[P/4]; B « B)))9;
from a few bytes to a few thousand bytes are anticipdbe P C&0xTic; D+ D+T[P/4; C+CM;
this paper, we assume that the output lehgthexactly 4 KB P D & 0xTfc; A+ A+ T[P/4]; D+ D)))9;
(or 2° 32-bit words). The.-bit output keystreany is used to (n1, ma, n3, na) + (D, B, 4, O);

encrypt input plaintexX by using the XOR operation. P Ak OxTfc; B B+ TP Ae A9

P+ B & OxTie; C + C +T[P/4]; B+ B)))9;

T P+ C & OxTic; D+ D+ T[P/4]; C + C)N Y;
k Make | P+ D& 0xTc; A+ A+T{P/4]; D+ D)WY,
—tgu] Tables
50 | (SHA)
= Figure 1.Initialization of (A, B, C, D , nl , n2, n3, n4) fromn. This
g initialization depends on tabl@sandR [1].
s ?:.l-ﬁa“s set up [1]. In the experimental evaluation section, we wil
% 7 assess performance degradation due to frequent key changes.
The second step ithe pseudorandom function. Given the

; - number of bitd, the tabled, R, andS (determined byw), and
vu7 vuy a 32-bit position index, the algorithm stretchasto anL-bit
% %3 ?‘ pseudorandom string.. The algorithm uses the routine
vy Initialize which mapsh and to the word4,B,C, D, n1, n2, n3,
n4 (Fig.2). These variables are modified over 64 iteratams
shown in Fig. 3.
The algorithm is divided into two stefi3]. Step 1 involves SEAL algorithm uses a few heuristics to improve the
Tables generation. This step uses the compression function chpability of the cipher to fend off attacks. For exémnijt
SHA-1 to expand the secret keyinto larger tabled, S and uses a large, secret key-derived S-box (the 2KB tahle
R. These tables are fixed and can be precomputed aftentheMereover, it uses an internal state which does not tlirec
a has been established. TablEsand S are 2KB bytes and manifest itself in the data stream (the registarsnz, n3, ns
1KB in size, respectively. The size of taBtedepends on the which modify A and C at the end of each iteration).
desmed bit length. of the keystream — each 1KB of keystrearR_ Paralldism Potential
requires 16 bytes k. .)
Table generation is typically done once over the coofse The SEAL algorithm can be applied concurrently on
communication session. Typically, this session takgdccessive sections of the input as streaming plaintext
substantial amount of time and is not in the criticahplt is becomes available. Thus, thread-level parallelism, i.e.
acceptable, in most applications, to spend this tinreap the replicating the computation shown in Figure 2, is s¢alalith
short keya to a longer representation. Therefore, SEAL is nite humber of cores available and is only limited bg t

an appropriate choice for applications that require rapid available bandwidth to memory.
On the other hand, there is limited instruction and dafl-le

parallelism at the inner loop of Figure 3, because @iriter-

Figure 2. SEAL functional diagram. Output y is #rerypted keystream.

function SEAL,(n)

y=A dependences among instructions of the inner loop. However,
for £+ 0 to codo the outer loop of Figure 3 can be unrolled since alhtins
Initializea(n, £, A, B,C, D, n1,m2,n8,n4); are independent (variablés B, C andD are initialized at the
for i 1 to 64 do beginning of each iteration). We use this observation to
P A & OxTle; B+ B+ TP/ A+ A))9 B+ Ba 4 exploit SIMD parallelism in platforms with vector presing
Q + B & 0xTfe; C+—CaTlQ/4;, B+ B))9% C+C+B capabilities
P (P+C) & Oxtle; D« D+ T(PJd); C C)))9 D D& C: P o .
Q+ (Q+D) & 0xThe; A AST[Q/4]; D+ D)) % A A+ D; We expect significant performance improvements not only by
P (P+A) & OxTic; B BaTIP/]; A A))S; exploiting thread- and data-level parallelism, but also by
Q@+ (Q+B) & 0xThe; C+ C+T[Q/]; B + B)); 9; increasing clock frequency and resolving data dependencies

P+ (P+C) & 0xTic; D+ DO TP/; C+ C))
Q+(Q+D) &xTfe; A A+T[Q/4);, D+ D)9,

yey | B+SHi-4 | CoS4i-3] | D+SH4i-2] || AeSH4i-1];
if |y| > L then return (yoy1...yr—1);

if odd(i) then (A, C) + (A+m, C+na)
else (4, C) + (A +na, C+na);

quickly. This is manifested in the experimental evaluation
section by the competitive performance of Core i7, gh hi
frequency processor with advanced architecture within each
2-way SMT core.

Figure 3.Cipher mapping 32-bit index to L-bit string SEAI-a(n) under the I1l. EPGAIMPLEMENTATION
control of tabled’, R, andS[1].

\v
\

TABLE G |_, R- MEM \
| Kev " CO?JSOL\/ iterations
TABLE Gy, S MEW SEALencoder v »15“—\ —]
KEY150 bi e main body []elc]olé® R- MEM
il ee g 4 5 TABLE _G ‘
TABLE 6 ey T~ MEM by INITIALISE 1 [+[e[c]ofe -
y [FR2L. JRou 2 (20,351
et ',Xi‘ = é L Eg\}h |terat|cns | -
output v mf /
[~ ““ﬂﬁfjﬁ’”jﬁ . TABLE GE
Figure 4. The block diagram of SEAL hardware impbatation. {;f:’ i \; 7
Figure 4 shows the block diagram of the FPGA hardware é'—(*lj & il
implementation. We implemented the moduBLE_G for /./ I ——
the production of the three tablBsS andT (Figure 5). This # B
module is just the compression function of the SecurghHa ya
Algorithm SHA-1.
Each timeTABLE_G runs, it produces a different output of Figure 5 Table Generation Design
(160 bits), which is written to five positions of memd@bx32))))
bits). We parallelized the process for the productibthe 3 A. Experimental Evaluation of FPGA implementation
tables - memories as shown in Figure 5. For tfidve FPGA design has been implemented on a Xilinx Virtex-6

implementation of these tables, we used BRAMS 32-biewitiX380T FPGA in Verilog using the Xilinx ISE 12.4 toolset.
and with sizes of 2KB foi, 1KB for S and 64 bytes foR The hardware complexity of a single accelerator is
respectively. demonstrated in Table I. A single accelerator proseakB
Thelnitialize module uses four 32-bit registefs,B, C, andD, input plaintext messageto produce a 4KB encrypted stream.
whose initial values are determined lynd the key-derived The HX380T FPGA can accommodate up to 32 engines for
tablesR andT. The module maps the 32-bit position index encrypting 32 4KB plaintext sections in parallel. The 32x
and the iteration countérto eight 32-bit words & By, Cp, Dy, accelerator case only replicates the main body of SEAL
Ng, Ny, Ng, Na. encryption, not the Table Generation module. Tableso al
These registers are modified over several iterationshén shows that we can achieve 179 MHz clock frequency.

main body of SEAL encryption to produce;AB;, C, D, on In order to measure the performance of our approachadever
each iteration. In each round nine bits of a registéreeA, B, real-world experiments have been carried out with different
C, or D) are used to index into table The value retrieved configurations of the system and various data-setsl€Tid).

from T is then added to or XORed with the contents of Bhe first configuration assumes a very frequent key change
second register: again oneAyfB, C, or D (Figure 3. every 4 KB. This, in effect, modifies the key and re-aities

The first register is then circularly shifted by ninesifions. In the tablesT, S and R at the end of every keystream
some rounds the second register is further modified by gddgeneration. It is an extreme case used to demonstrate the
or XORing it with the (now shifted) first register. Wherefficacy of each platform to execute the Table Germrati
registers A B, G, and D) are written, they are added to théunctionality.

keystream, each masked by first adding or XORing it withTae third configuration assumes that the whole input belongs
certain word from tableS The iteration is completed byto a single communication session, whereas the second
adding toA andC additional values dependent onnl, n2, configuration is an intermediate case. Our measureraieots

n3, n4. that the Table Generation phase is a performanciertetk if
Keystream valuey derived from this procedure are XORedhe SEAL user requires frequent secret key modifications.
with the plaintext data of memok; We take advantage of the

fact that on-chip memories (BRAMS) of high-end FPGake IV.MULTICORE IMPLEMENTATIONS
dual-ported so that we can overlap reads/writes of theOne of the objectives of this work is to study the
keystreany. performance of SEAL when fully optimized for both

An interesting design space exploration exercise is trezonfigurable and multi-core platforms. We use thetdlhg
introduction of pipeline stages in the execution of sequential

computations for Table Generation and main encryption .o - | SESOURCE UTILIZATION AND MAXIMUM
(Figure 3). For modules that execute non-critical operatio | ock FREQUENCY FOR A SINGLE AND 32 SEAL

such as Table Generation, we are mostly interestddgim ACCELERATORS, IMPLEMENTED IN A VIRTEX-6 HX380T
clock frequency, since these modules will determine the FPGA.
global clock frequency (we use a single clock in our agsig Sngle 3% FPGA Tota
Therefore, these modules are heavily pipelined to asere Accelerator | Accelerators | Available
clock frequency. Logic Slices | 1350 46,596 59,760
BRAMSs 5 160 768
(36K b)
CLK (MHz) | 185 179

TABLE Il FPFGA PERFORMANCE MEASUREMENTS

1 GB encryption
with key change

1 GB encryption
with key change

1 GB encryption
with key change

every 4KB every 128MB every 1GB
Single Acceler ator 20.152sec 8.165sec 8.164sec
32x Accelerators 0.629sec 0.255sec 0.255sec

partitions them to message blocks, which are in turn
distributed to worker threads. Moreover, if the key needs to
change throughout the encoding of the input data, the
supervisor executes Table Generation to produce the new
sameT, § and R arrays. Finally, the supervisor notifies
workers whenever there is no more input data to psyand
they — in turn — terminate gracefully.

Unfortunately there are no exploitable opportunities fo
multithreading in Table Generation, due to the tight data

dependencies between successive iterations of thelooper

However, Table Generation is pipelined with data encrgptio

platforms (besides the Virtex-6 FPGA): whenever multiple keys are used for the encoding ofge lar

e An Intel-based workstation using the Intel Core i7 87fata set, resulting to the generation of multiple setalgés.
processor (45nm), clocked at 2.93 GHz with 8GB DDR&hen workers are encoding using versiad theT, SandR
memory. This processor integrates four identical corghles, the supervisor thread generates their niext) (
each with private L1 and L2 caches (32KB and 256 KBersion, using the next key. As was discussed in Sedtion |
respectively), and a common 8MB L3 Cache. realistic situations multiple keys can used successively,

e An NVIDIA GeForce GTX-480 high-end GPU (40nm)however key changes occur at a very low rate that allows
clocked at 1.4 GHz with 1.5 GB of GDDR5 devicdable Generation to fully overlap with data encryption,
memory. This GPU is based on the Fermi architecturithout becoming a bottleneck. In order to ensure thahe
and includes 480 cores organized in 15 Streamintessage block is encoded with the correct arrays we apply
Multiprocessors (SM) of 32 cores each. Compared wittouble buffering. There are two copiesTofS andR tables:
previous GPU generations, it adds an L1/L2 caclee written by the supervisor when preparing the tafoles
hierarchy to the memory architecture to reduce memdhe next key, and one read by the workers, generated by the
access latency and improve programmability. GeForcerrently effective key. A global barrier synchronizes the
GTX-480 is connected to Core i7 motherboard via a 18upervisor and workers at key change points. At thosespoint
PCI express bus. the roles of the two copies of the tables are flipped.

A first, generic optimization with respect to the refece Multithreading has been implemented using the POSIX

SEAL implementation was to indentifijkey invariant threads standard. We have experimented with up to 8 worker

computations in Table Generation and remove them from theeads, in order to exploit the 4 cores and the 2-way SMT

critical path of Table Generation, i.e. perform thamhy once, (Hyperthreading) capabilities of the Core i7 processor.

on program initialization. The benefits are obvmn_sthe B. GPU (CUDA) Implementation

common real-world case where a large message is ehcode

using multiple keys, thus requiring multiple calls to Tabi® distinguishing characteristic of GPUs is that they aike
Generation. to manage parallelism at a very fine granularity. eBithat

o they support extremely fast context switching between dhrea
A. x86 Parallelization warps (i.e. groups of threads) upon stalls of any kind,
The parallelization on x86 was a two step process: e fi abundant parallelism must be available in order tatdiey
created a vectorized (SIMD) version of the algorithm andide the latency introduced by stalls and keep GPU
then exploited multithreading. utilization high. Another interesting feature of GPUs —
We introduced vectorization in both the phases of Tablkspecially the latest Nvidia Fermi architecture -hest they
Generation and encryption. Loops without data dependencigéow the configuration of on-chip cache memory ékee
(outer loop of Figure 2) are unrolled by a factor of 4software- or hardware-controlled. It should also bed dhat
therefore data are processed in group of 128-bit (asrgeat the GPU is an independent device and does not have direct
4 x 32-bit elements), using intrinsics from the SSE2ccess to the system’s main memory. Instead, inputadalta
instruction set. results must be programmatically transferred between
In order to facilitate the efficient exploitation dfet vector system’s main memory and the GPU device memory
capabilities of the processor, data had to be reorgdriiz (GDDR5 DRAMY).. Those transfers suffer severe latency and
memory — either by changing their shape or by paddingre limited by the PCle bus bandwidth.
arrays. Consecutive elements within an input or outpubwectWe implemented SEAL on the GPU using CUDA, a
need to be stored in consecutive, properly aligned agisBesprogramming model by Nvidia, specifically designed and
in memory. implemented to support general purpose computations on
Multithreading is applied during data encryption, at th&PUs.
granularity of a block (group) of messages. In scenaridsiven that the parallelism in Table Generation is eath
where multiple messages need to be encoded, this canlib@ted, Table Generation proved to perform better lo& t
done in parallel, provided that simultaneously encode@PU than on the GPU, even after taking into accountdabe
messages use the sam& andR arrays.
We used a supervisor-worker threads scheme. The superviser
reads a chunk of 4KB plaintext messages from the input afdatest Nvidia Fermi GPUs can make this process adraetransparent to

the programmer, yet with many limitations.

of transferring the generated tables to the GPU. Géngrat Running threads in multiple cores provides linear speed up
the T, SandR tables in the CPU also provides opportunitiesvhich is to be expected since threads are independent.
of pipelining and overlapping Table Generation with dat&omewhat surprisingly, hyperthreading (when moviranfr
encryption, as described in the previous section. Mamreo 4 to 8 cores) provides a remarkable speed up of
since the tables are read-only by the GPU they catdped approximately 42% in the first two scenaria. This is an
to constant memory — a software controlled, lowreye interesting observation since hyperthreading has Seewn

high bandwidth, read-only cache in the GPU. to provide much lower performance improvement for vegio

In order to overlap memory transfers between devicworkloads and, sometimes, has an adverse impact on
memory and main memory we used the mechanism ekecution time.

streaming offered by CUDA. Streams are named sequencdse FPGA implementation is easily scalable and its
of data transfers and/or computations. Operations within performance depends on the number of available acceterato
stream must be performed synchronously and in ordghat can fit in the device. The low performance of rgle
However, operations across different streams are ytotathccelerator is mainly due to the low clock frequency of
independent and asynchronous. Each stream transferd~RGAs compared to high performance processors, and the
64MB block of messages to the GPU, encodes the messaljsted parallelism within an accelerator. FPGAs perfo

and transfers the results back to the main memorybide& relatively better when session size is 32 Kbits, bseghey

of messages is processed in parallel by 16,384 threads. Tam offer an efficient implementation of the Tablen@ration
block size is an educated choice that satisfies thedffaole = module, which becomes the bottleneck in this usage scenario.
low memory requirements — so that concurrently activéhe GPU proved to be an appropriate platform for
streams do not overflow any level of the GPU memorimplementing the SEAL algorithm. When we include the
hierarchy — offering at the same time high parallelisncopies of plaintext data and tables from CPU main memory
potential — so that GPU computational resources ate GPU device memory on execution time, speed up drops
efficiently utilized, hiding stalls latency. considerably, below Core i7 performance. This shows tha
The GPU memory management unit performs significantlgerformance is limited by the peak bandwidth of 16x PCle.
better if accesses to device memory are coaleseedf they ~We should note, however, that GeForce GTX-480 is one of
follow specific patterns. In the SEAL encryptionthe fastest commercially available GPUs. Figuredshthat
implementation coalesced memory accesses could I[seis difficult to keep all 480 streaming processor from
achieved by transposing data from the input streams and atomputational starvation when limited by PCle bandwidth.
results before sending them back to the main memory. The

performance benefits of memory coalescing proved enough V. RELATED WORK

to justify the extra cost of the two transpose opematio This section provides some references to previous work
which were implemented using the optimized algorithmelated to developing cryptography solutions both in degticat
available in the CUDA SDK [13]. Some extra reorganizatio hardware on GPUs and FPGAs.

of the algorithm allowed the minimization of the numbér Several applications and especially in cryptography baea
high-latency memory transfers, favoring fewer, larggroposed and implemented in hardware. Examples include
transfers instead of more, smaller ones. image processing [5], data mining [6] for FPGAs, and AES
encryption [7] on GPUs.

Comparison between FPGAs and GPUs has been proposed for
Similar to the FPGA implementation, we decided that iwideo processing applications [8], and data encryption
could be useful to test our implementations changing kestandards (DES [9], SHA-1[14])

after 1 message or 32Kbit or 4KB, 32768 messages or 1Ghih Zhou , and Wenbao Han investigated the implememtati
or 128MB, 262144 messages or 8Ghit or 1GB. We createchad performance of SHA-1 using FPGA and GPU, with the
random 1GB input file and ran each of our 4 implementationsew of comparison their salient features [14] .

(Initial version (Single Threaded), SIMD version (SingleThe DES encryption results [9] shows to process desitg-
Threaded), Multithreaded + SIMD version for 2, 4, 8 threadit block on FPGA and requires only 83 cycles, while the
CUDA) 5 times. same operation executed on the GPU requires X.800°
Figure 6 compares the speed-up of SEAL implementatiomycles. While the GPU does not support some important
for all three scenaria described in Section IIl.A coredan operations for this application, the main reason for this
the execution time of SEAL code running as a single threatisparity is that the GPU requires full utilization take

on Core i7. The single-threaded code (corresponding to spestiiantage of the hardware’s latency hiding design, and this
up of 1) requires 1.5 secs for 8 Gbit and 1 Gbit sessemmd example far underutilized the processor.

11.28 secs when a session is 4 KB in order to encrypt &m implementation of SEAL in C encrypted the input
input plaintext of 128 MB. plaintext at 6.9 MB/sec on an antiquated PC (50MHz). The
Code optimizations for Core i7 are very successful isame code ran at 15.5 MB/sec on a low end RISC workstatio
improving speed-up as shown in Figure 6. Data levéhn SGI Indy, which has a 100 MHz MIPS 4600 Processor)
parallelism (SIMDization) is more successful when used i[10].

Table Generation and makes a pronounced contribution Bosselaers provided experimental results on the performance
speed up when session size is 32 Kbits. of various cryptographic algorithms in [11]. A comparison

IV. EXPERIMENTAL EVALUATION AND COMPARISON

8 Gbit Session 1 Gbit Sessions 32 Kbit Sessions

9 831 9 824 30 28,29
s 7.69 s 7,65
7 7 588
g_ 66— 54— g_ 6 540 o
>
%5 3: . 3
g 4 3 4 || 3,65 i
g ;| 2,73 a | 272 || 2
o asa i I .
2 100 2 T30 134
1 - 11w
0 T T 1]
DD o
& & E F R E L LSS S
N FFEEEE Sl
S EEE GO EEE G
R e) & g B S XL
&t &l [¢d
IR N SR

Figure 6. Performance comparison across the tHa¢fopns for various configurations

SEAL implementation on the two machines (SPARC and

Alpha) is shown in [12].

[6]
VI. CONCLUSION

In this paper, we have presented the mapping and

optimization of the SEAL Encryption algorithm on BRGA,

an Intel Core i7, anthe NVidia GeForce GTX480 GPU. All (g;
three platforms were able to exploit the availahlead-level
parallelism and achieve the high performance. We fieund

that the modern CMP platforms make better use ef tB]
sophisticated hardware-based cache hierarchy dsaséligh
clock frequencies to sustain high utilization of ttlata path.
GPUs have the potential to speed up SEAL algoridven
more provided that they are not limited by the heidth of [0l
PCle. Finally, FPGAs can better exploit parallelisfmTable
Generation module. Thread level parallelism isydithited [11]
by the device size and is the main way to allevitageadverse
effects of low clock frequency.

(1]

(2]
(3]

[4]
(5]

VII. REFERENCES 12l
P. Rogaway and D. Coppersmith, "A Software-OptimiEncryption
Algorithm", Proceedings of the 1993 Cambridge SigguNorkshop, [13]
Springer-Verlag, 1994.

O. Goldreich, S. Goldwasser, S. Micali, “How to stract random
functions”, Journal of the ACM, Vol 33, No. 4, 198®. 210-217 [14]
H. Handschuh, H. Gilberty?® cryptanalysis of the SEAL encryption
algorithm”, Fast Software Encryption, Lecture Noties Computer
Science, Vol. 1267, Springer- Verlag, 1997, pp21-1

B. Schneier, Applied Cryptography, Second Editidahn Wiley &
Sons, 1996.

B. de Ruijsscher, G. N. Gaydadjiev, J. Lichtenaaexd E. Hendriks.
FPGA accelerator for real-time skin segmentatienPfoceedings of

the 2006 IEEE/ACM/IFIP Workshop on Embedded SystéonReal
Time Multimedia, pages 93-97, 2006

Z. K. Baker and V. K. Prasanna. Efficient hardweega mining with
the Apriori algorithm on FPGAs. In Proceedings be t13' IEEE
Symposium on Field-Programmable Custom Computingchifees,
pages 3-12, 2005.

T. Yamanouchi. AES encryption and decryption oa GPU. GPU
Gems 3, July 2007.
B. Cope, P. Y. K. Cheung, W. Luk, and S. Witt. H&G8PUs made
FPGAs redundant in the field of video processingPtoceedings of
the 2005 I|EEE International Conference on FieldgPammable
Technology, pages 111-118, 2005.
Shuai Che; Jie Li; Sheaffer, JW.; Skadron, KLach, J.
“Accelerating Compute-Intensive Applications witiPGs and FPGAs”
In Application Specific Processors, 2008. SASP 2@8nposium on ,
pages: 101 - 107 , 8-9 June 2008

P. Rogaway and D. Coppersmith, "A Software-Optidi Encryption
Algorithm", FAST SOFTWARE ENCRYPTION,Lecture Notdas
Computer Science, 1994, Volume 809/1994, 56-63.
B. Preneel, V. Rijmen, and A. Bosselaers, Recenéldpments in the
design of conventional cryptographic algorithms,n(ater Security
and Industrial Cryptography—State of the Art andlition,Lecture
Notes in Computer Science, Springer-Verlag, Betbrappear.

M. Roe, Performance of block ciphers and hashtfons—one year
later, Fast Software Encryption, Lecture Notes mmPuter Science,
Vol. 809, Springer-Verlag, Berlin, 1994, pp. 359236

NVIDIA CUDA C SDK - Linear Algebra
http://developer.download.nvidia.com/compute/cudidisebsite/Linea
r_Algebra.html

Lin Zhou , Wenbao Han, A Brief Implementation Arsily of SHA-1
on FPGAs, GPUs and Cell Processors,. Internatid@@ahference
on Engineering Computation, 2009. ICEC '09 , Horomé(

